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ACOUSTIC RADIATION AND SCATTERING FROM ELASTIC STRUCTURES
“

PRECIS

I This report presents a numerical technique for the linear dynamic analysis
cf a finite elastic structure immersed in an infinite homogeneous acoustic medium.
It is required to determine the vibratory motion of the structure and also the
associated acoustic field in the fluid, when the structure is either subjected

to internal applied forces or is acting as a scatterer of an incident acoustic
wave. A finite element analysis of the structure is matched at the structure—
fluid interface with an integral equation representation of the exterior acoustic
field, leading to a coupled system of equations which may be cast in either
acoustic or structural form. The former approach is preferred here for which
numerical results are presented when the method is applied to plane wave scatter—
ing by thick and thin elastic spherical shells.

CONCLUSIONS

26 By combining equations derived from a finite element analysis of a vibrat—
ing elastic structure with those from an integral equation representation of an
infinite exterior acoustic field, an analysis of the coupled dynamic interaction
problem has been shown to be feasible.

3. The structural and acoustic models may be chosen completely independently
although the procedure does simplify if interpolation nodes are made to coincide,
the coupling being defined through three interaction matrices X, L and L', Thus
advantage may be taken of existing computer program packages designed to solve

the two uncoupled problems. In particular, it is hoped to combine the PAFEC43
structural analysis program with the acoustic radiation/scattering program des-—

cribed in this report3 .

4. Some test examples for which analytic solutions are available have demon—
strated the practicability and accuracy of the approach. It is hoped in the near
future to be able to compare numerical and experimental results for some more
complex structures in water. If an unacceptably large number of degrees of free-—
dom for the structural model are required, it may then be necessary to consider
the alternative modal approach.




f INTRODUCTION \
i

Se This report presents a numerical technique for the linear dynamic analysis
of a finite elastic structure immersed in an infinite homogeneous acoustic medium,
This problem commonly occurs in underwater acoustics where it is of considerable
interest to determine the acoustic field both radiated by a submerged vibrating
structure, and also scattered by a submerged elastic structure. It is well-known
that the vibrational properties of a structure can significantly affect the
scattered acoustic field, particularly when the acoustic medium is water, the
impedance mismatch being much less than between a structure and air, and the
assumption which is frequently made that the structure is perfectly rigid is often
- an oversimplification of the true situation.

6. Analytical approaches to such coupled structure=fluid interaction problems
are almost invariably concerned with spherical or infinite cylindrical geometries
for which the classical method of separation of variables is availab1e1, since

in these cases normal structural modes, not coupled by radiation loading, existe.
In particular, approximate shell theory has been extensively used to determine

the response of thin elastic shells under acoustic loading.2-4

Te Until relatively recently little progress had been made towards the solu-—
tion of interaction problems for other geometries. However, now that general
numerical methods have been independently developed for both the structural and
acoustic problems, the feasibility of combining these techniques to tackle the
5-12 For a complex structure subjected to known
applied forces the finite element method13 has become an accepted, well-proven,
and highly successful analysis tool. Similarly, although certainly less widely
applied, methods for determining the acoustic field radiated or scattered from a
structure have been developed when boundary conditions on the structure surface
are assumed to be known, e.g. rigid surface, soft 'pressure release' surface.
14-17

and

coupled problem has been realised.

These methods are usually based on integral equation formulations
approximated using finite element type expansions.

8. Indeed, although the term 'finite elements' is only now being explicitly
associated with methods for the solution of integral equations, if the name is
understood to refer to the local piecewise nature of the approximation to the
domain of the equation and also to the unknown function, and not necessarily
associated with any particular method for determining the function parameters,
such techniques have been in evidence for some time. Most commonly, when apply-
ing the finite element method to integral equations, the parameters are deter—
mined through collocation since the more familiar methods of Galerkin or using a
variational principle require a further integration over the domain of the
equations When that domain is an arbitrary surface in three-~dimensional
Buclidean space over which the integrations are performed numerically, a repeated
integration could be extremely costly in computer time., In fact Maxwell ef'fec—
tively solved the integral equation relating the potential of a thin charged
conducting square plate to the surface charge density by a finite element

approach in 187918. Although the complete details are not given he apparently
accounted for the expected singularity in the charge density at the edges and
corners of the plate by using singular basis (shape) functions in these regions.

Also product integration, which was introduced by Young19 in 1954 as a technique
for the solution of integral equations, is in its most popular form no more than
a finite element method.




ACOUSTIC EQUATIONS f

9. Small amplitude acoustic waves propagate through an ideal homogeneous
fluid of density Pe and speed of sound ¢, according to the linear wave equation

2
voP(r,t) - 15 3—2- P(r,t) = 0 (1)
¢ 0ot
where P(s,t} is the excess acoustic pressure at a position r in the fluid at

time t, Sound pressure is related to particle velocity ll_(‘z;,t) through

av
Pr,t) = b, 5% (Lt (2)

10, For a single frequency harmonic time dependence of the form eiwt, where @
is the angular frequency, equation (1) becomes the Helmholtz or reduced wave

equation

(V¥ + 1) p(x) = O (3)
where

P(r,t) = p(};)em (&)

and k = w/c is the acoustic wavenumber,

11. When the domain of the partial dif ferential equation (3) is that infinite
region exterior to the structure surface, techniques normally employed for the
approximate solution of such equations (finite differences, finite elements etc)
present obvious difficulties of implementation. A boundary must be introduced

at same finite distance from the structure together with a boundary condition
there which should approximate the true radiation condition at infinity, to ensure
that all acoustic waves either radiated or scattered by the structure are outgoing

there. Such an approach was suggested by Zienkiewicz and Nevrton20 using a system
of dashpots on the outer fluid boundary, although the correctness of this pro-

cedure has been quest:icmerd.z1 Even if the appropriate boundary condition could

be derivedzz, such methods necessarily require a large number of nodes, particu-
larly in a three-dimensional situation, at each of which an approximation to the
solution is produced. In practice however, it is often only the acoustic field
at a selected number of nearfield positions amd also the farfield radiation
pattern that is of interest.

12, Thus the ma jority of workers in acoustics have chosen to reformulate the
dif ferential problem (i.e, differential eqation plus sufficient boundary condi-
tions) 2+ an integral equation. This approach has the immediate advantage that
the inr'inite exterior domain of the differential equation reduces to a finite
domain of one dimension less (the structure surface) for the integral equation,
Hence only surface values are initially calculated from which the field at any
positions of interest may be evaluated through the integral representation
inherent in the approach. Also, the exact radiation condition is automatically
included in eny integral equation formulation,

13. Unfortunately, all the classical formulations of the Helmholtz equation
in an exterior region as an integral equation - equivalent single or dauble

—— ' ; - ‘J




layer source distributions a via Green's Theorem - break down either through
non-uniqueness or non-existence of their solutions at certain wavenumbers,
This failure is completely non-physical in nature, being solely due to the
integral equation formulation, and is associated with the existence of eigen-
solutions of the Helmholtz equation within the region interior to the surface

23,24

of interest, Various 'improved' formulations have been proposed which are

14,25

either designed to mitigate the problem at low frequencies, or to eliminate

it c:c:mplet’.ely.%-28 These latter methods require considerably more computa-
tional effort to implement and have as yet not formed the basis of any practical
acoustic radiation/scattering computer program, although test programs have been

29 and 1:hree30 dimensions, A

comprehensive feasibility study for such a program package has recently been
3

written and applied to some simple problems in two

comple ted.

14, In order to illustrate the coupling procedure proposed here, the integral

equation approach due to Schenck“' is employed, although within the possible fre-
quency limitations previously mentioned any available integral equation formula-
tion could be used.

15. Consider an acoustic wave (pinc(£)) incident upon the closed surface S of

the elastic structure, resulting in a scattered acoustic wave with pressure
P (r)e Then, from Green's Theorem, the total acoustioc pressure
scatt '~ 32

p(r) (= pinc(f-) + pacatt(fv)) satisfies the Helmholtz integral formulae
p(z') - Py (2") 2*in B (5a)

[ {P(S) ai:;. (r.x') - .aQE_ (E)G(E’S')} as_ = % p(r') - Pino(Z') ' ons (5b)
: i - 0,.(r') £ I (S0)

where E is the infinite acoustic medium exterior to S, I is the interior of the
surface S and a is the solid angle subtended by the acoustic fluid at the point
r' on S (for a smooth surface, a = 27 everywhere),

e-ikl r-r' |

(6)

is the three-dimensional free-space Green's function for the Helmholtz equation
(3), and %1— denotes differentiation in the outward normal direction (2) at
r

£ on S (i.e. from S into the fluid), In the case of pure radiation the total
acoustic field p(g), which now consists of radiated pressure only, also satisfies
the Helmholtz formulae (5) with the term pmc(z) absent,

16, On any part of the surface S which has a well-defined normal direction,
the relation (2) gives

(@) = -iopy v(x) (7)

where v(r) is the outward normal surface velocity.

P —




17. Hence, equations (b) and (5c), known as the Surface Helmholtz Equation
(SHE) and Interior Helmholt:z Relation (IHR) respectively, relate the acoustic
pressure on the structure suface to the normal surface velocity. Both have
been used as the basils for the solution of acoustic radiation or scattering
problems when either the surface pressure or velocity is known, although

33-36,16 The SHE is the most suitable for

numerical trestment but exhibits non-uniqueness of the solution, whenever the
wavenumber kK is an eigenvalue of the Dirichlet eigenproblem for the interior

neither is entirely adequate.

23 .
region I . The IYR can be shown to possess & unique solution if it is satis-

fied at all interior points}5 (far an axisymmetric problem it is only necessary
to enforce the relation at all points along the axis of symmetry) but suffers
from numerical instability due to its similarity to an integral equation of the
first kind with & non-singular kernel,

18. The idea of Schenck was to combine the numerical stability of the SHE with
the unioueness property of the IHR by overdetermining the set of linear equations
obtained from a numerical approximation of the SHE with a small number of addi-
tional equations derived from the IHR, The resulting linear system is then
solved by a least squares procedure. This method is generally known by the
acronym CHIEF Lombmed Helmholtz Integral Egquation Fomulat:.on) Schenck proved
that at a critical wavenumber only the required solution of the SHE will simul=-
taneously satisf'y the IHR, provided the IHR is not evaluated on a nodal surface
of the relevant interiar eigenfunction,

15. In practice the CHINF method is satisfactory only at relatively low fre-
quencies when a sufficient number of correctly positioned interior nodes can be

25

selected if required. Jones ~ has suggested a systematic approach to this choice.
20, In order to obtain a discrete matrix approximation to the SHE and IHR a
finite element method is used. Approximations to the surface acoustic mressure
and narmal surface velocity are assumed in the farms,

m
p(r) & _21 py #,(x) (8)
iz

v, x3(x) (9)

wher e .'-i\r‘) and xi(g) are scalar basis functions defined on some surface S*
aporoximating S. Collocation of the SHE (5b) at m surface points I

i=1,¢y.0.,m, at which there exists a well defined normal direction, and the
IHR(%e) at m' interiar points I i=m+1, m+2,.0., m+m' leads to the matrix

system
5 = 10
Ap = Bv*p:i.nc ( ) ‘
i
where,
1 G | 2 ¢ as 1
Ay = 2 0E) < eyE) o (r,r,) as, (1) ‘
S.




B

Bij = 1upf[ xj(s)c(z,gi) ds (12) ’
s‘

for i=1,2,oo.’ lIH-ln'; J=1 ,2.000, lll,
T
and p = ip1 Py eee pmi i ¥= {v1 Vy eee vnl'r, and

5 T
Pine © ipinc(£1) p:an(f—Z) il pinc(zmm') i

Details of a particular choice of basis funotions and a method of generating
the approximate surface S* are discussed later,

21, Note that the resulting matrices are full, in contrast with the sparse
banded matrices that are typical of the numerical solution of differential
equation problems by finite element or finite difference methods, and the coef-
ficients, which are frequency dependent, must in general be derived via time-
consuming numerical quadrature. Also, since collocation has been employed to
obtain sufficient relations between the parameters, the system is not symmetric.

22, The system of equations (10) is sufficient to determine completely the
acoustic field in two particular cases of interest; namely for radiation
(pinc(—x:-) £ 0) where the surface velocity is specified, and for scattering where

the acoustic impedance of the surface is specified, most usually assumed to be
a perfectly hard or rigid surface (v(r) = 0).

23, However, in general the vibrational response of the structure must be
taken into account, in which case equation (10) merely provides a relationship
between acoustic pressure and normal velocity at the structure surface,

STRUCTURAL EQUATIONS

24, The region enclosed by the surf:ace S is assumed to contain an elastic
structure whose motion is governed by the linear equations of elasticity,

div g(‘x;,t) + E(S’t) = P U(z.t) (13)

~

-]
@ jJo
ct N

where o(r,t) is the stress tensor, F(r,t) represents external farces, Py is the
structure density, and U(r,t) is the particle displacement,

25, The discretisation of these equations by the finite element method is now

a familiar techniqueu and will not be described in detail here. An approxima=-
tion to the structural displacement is assumed in the form

U(r,t) = e £ u, &(r) (14)
i=1
where each Oi(_x:’) is a diagonal matrix (of order d, the spatial dimension of the

problem) of basis functions defined throughout the volume of the structure.
These basis functions are normally chosen such that they vanish at all but one
node of an element subdivision of the structure, in which case the vector

i
w——-——-———u




8.

purameter vy describes the displacement at that node, If each component of the
parameter uy has the same associated basis function, as is frequently the case
in practice, the matrix Oi(r) may be replaced by a scalar basis function ¢i(£).

26s The finite element equations for the structure with the harmonic time
dependence omitted, are then of' the form

(K + iwC - wzu) q = g(k) o) (15)

where K, C and M are stiffness, damping and mass matrices respectively, q is the
vector of parameters uj, f(k is a consistent load vector derived from known

applied forces, and f(p) is a consistent load vector representing the acoustic
fluid pressure acting on the fluid-structure boundary. Explicitly, the vector

f(p) has components

f‘i(p) = - l p(r) &(r) nds_ (16)

where this notation is used to define simultaneously all the components of f(p)
associated with the vector parameter Yy

27« The matrices K and M and usually C are symmetric and banded and if struc-~
tural damping is ignored, the system is real, If there is no acoustic loading

on the structure or if the structure is only subjected to a static fluid pressure,
the systom of equations (15) alone defines the displacement of the structure in
terms of the applied loads. However, in the case of dynamic fluid-solid inter-
action, these equations only relate structural displacements to the acoustic
pressure at the fluid-structure interface,

COUPLED EQUATIONS OF MOTION

28,  The complete solution of the fluid-structure interaction problem may now be
described by combining the acoustic equations (10) with the structural equations
(15). Substitution of the representation (8) for the surface acoustic pressure
into (16) leads to

i R (17)

where

Ly = l vy(r) o,(r) nas, (18)

for i=1,2, «es, n; J§=1,2, ..., m, which ensures continuity of sound pressure
between the structural and acoustic models,

29, Continuity of normal surface velocity is achieved by matching at some set
of aurface nodes, ri, i=1,2, ..., k, the approximations (9) and (14) to give

Xv = 1wl'q (19)




9.

where
for 1=', 2, eee) k; Jai ,2, eee, M, and
Lyy = &) o} (21)

for i=1,2, ¢ee, k; J=1,2, ¢ee, n, with 2; being the outward normal direction

at zi.
30, Normally the basis functions ¢i(£) and xi(‘x_") would be chosen to be the

same and to interpolate m surface points, These would then be the natural
collocation points for the SHE and would also be the positions at which to
ensure the continuity of velocity. In this case X would be the identity matrix,
If these acoustic nodes coincide with some or all of the surface structural
nodes then the non-zero elements of the matrix L' are simply components of the
outward normal direotions at the acoustic nodes,

31« The solution of equations (10), (15), (17) and (19) may be accomplished in

a number of ways. FElimination of the structural displacement vector leads to a
combined matrix equation in acoustic form

(A+dL) p = petk) g (22)

Pino
where
D = 1wBX L' (K + dwC-0)"', (23)

Onoce the surface pressure has been determined the structural motion follows
directly f'rom

q = (K« 106 - o)™ (0 - 1), (24)

Initial elimination of the acoustic messure leads to a perturbation of the
structural equationa,

(K + 4wC - nzl + iwu-1BX-1L') q = f(k) " T (25)

pmo

with the surface pressure then being given by
p = A~ (wa.iL' CRR N
ine

52, If it is necessary to form non-squarem atrices A and B to ovarcome non=
uniqueness problems, the inverse of matrix A is to be understood in a generalised
least squares vonue.

Lot

TR G w(R, +1R,) (27)

then equation (29) becomes




10,

(K + i0(C + 021) -t (M + nz)) q = f(k) - (28)

pino

and the effeot of the fluid oan be seen as added mass and damping terms, If |
the fluid is considered incampressible (the low frequency limit, k = 0) and

hence unable to sustain a sound field, the matrices A and B become totally real

and imaginary respectively and the added damping term is, as expected, iden-

tically sero. In this oase it is the Laplace equation which governs the fluid

behaviour, for which there are no non-uniqueness or non-existence problems

associated with an integral equation formulation.

33. PFrom a computational point of view the system of equations (22) is dense,
complex, unsymmetric and of dimension (mn') x me As an intermediate step it

is necessary to form the products DL and Dt‘(k), not by camputing explicitly the
inverse mtrix (K + iwC - uzl)-1 but by solving an nd x nd system of linear
equations with (K + iwC - uzl) as the coefficient matrix and the columns of L

and also f(k) as the right hand side vectors, BEfficient routines are available,
due to the symmetry and bandedness of the coefficient matrix, to ocarry out this
procedure the result of which is retained for subsequent evaluation of the
structural displacement parame ters,

34, Now consider the system of equations (25). Due to the acoustic perturbding
term, the system no longer possesses the structural features of bandedness and
symnetry, but is relatively dense, canplex, unsymmetric and of dimension nd x nd.

As an intermediate step in this ocaloculation it is neceasary to form A-1B and
A-1pino by solving an (m + m') x m dense complex system with multiple right hand

sides using a least squares proocedure.

35. Since in general n » (m + m') it would appear computationally more effi-
cient to formulate the coupled solution as the system of equations (22) and this
is preferred here, although some authors have adopted the alternative

app!'mwh.a'1 ’

36, For many real complex structures submerged in water, particularly when no
symmetry is present, the finite element model would necessarily have a large
number of degrees of freedom and thus excessive computer cost may restrict
either of the above approaches. In this oase a modal approach may be used to

advmtago,” whereby the structure displacement is approximated by a linear
combination of the dominant in-vacuo, undamped normal modes of the structure,
The modal frequencies (Ai) and mode shapes (01) are efficiently obtained from

equation (15) with the load and damping terms set to sero,
K- A £ M) O, = O
( T 1 g T . (29)

A oconvenient normalisation is usually

T R (30)

%

IO1

T 2
0," K0 = A (3)




with the orthogonality relations ,

3
eiqu=a

holding for i £ j.

K6, = 6 L9 i (32) |

If the structure displacement is now expressed in terms of N of these modes as
q = 0 a (53)

where a is a vector of parameters and 6 is the mtrix whose columns are the
N normal modes, the acoustic and struotural forms of the coupled problem become
respectively,

(A +SL)p = selk) T (34)
where

S = 1BX L' 8 (A + 1w 67C @ - o21)" 6T (35)
and

A+ 16" (ComaBLr)0-0iD)a = of(ell) LA-1pin°). (36)

A is the diagonal matrix with elements Aiz.

37. These systems are similar to those given previously except that if only a
small number of dominant eigenmodes are chosen to represent the displacement,
the matrices derived from the structural model are of smaller size (N « n), Of
course the eigensolutions of the structure also have to be determined, but this
need only be carried out once for a structure while a coupled solution might be
required at a number of frequencies, If no internal damping is present or if
present can be represented in a particularly simple manner, the matrix inversion
required in equation (35) becomes trivial,

38, Once the surface pressure and structural displacement (and hence normal
surface velocity) have been evaluated, the pressure at any position in the fluid
may be determined directly from the Helmholtz equation (5a) via numerical
quadrature in an analogous manner to the derivation of the coefficients of the
acoustic matrices A and B. For positions at large distances, R, in terms of the
acoustic wavelength, from the structure the radiated or scattered part of the
acoustic field has an angular distribution independent of R. The dependence on
R is of the form exp(-ikR)/R which may be factored out of the Helmholtsz integral

to simplify itas avuluation.3
e Thus equations which describe a complete solution of the coupled fluid-

astructure interaction problem have been presented for a structure either subjected
to internal applied forces or acting as a scatterer of an incident acoustic wave.

N<‘\1m,111y one of' the vectors f(k) and pino will be identioally zero GlthOUSh the

formulation does not require this to be so,




NUKERICAL IMPLEMENTATION AND RESULTS

40. In order to evaluate the coefficients of the matrices A and B in the
acoustic equations (10) it is necessary to define a surface S*, an approximation
to S, choose the basis functions cﬁi(s) and xi(g) appearing in the surface pres-

sure and normal surface velocity representations respectively, choose a set of
collocation points, and finally select an efficient numerical integration
routine.

Li. A surface S* may be defined as the continuous union of m sub-regions Si"
each of which interpolates to some degree a set of nodes lying on S, If the
transformation

r = x(uv) (37)

maps a point (u,v) in a local surface coordinate system for the subregion Si‘

to a position g = (x, ¥s z) in the global cartesian coordinate system for the
surface S, then an integral of the form

i = lf({) as (38)
may be approximated by
m -
I~ f(s)/ﬁdudv (39)
i=1 &
i
where
2 2 2
D = D" 4D, +Dy (40)
and
°) 2 d(z, X o(x
Dy = u, v °? D2=au,v’ D5=au,v" (81)

(D1, Dys Dj)//i is the unit normal to S,* at (u, v), which is required to
evaluate the normal derivative of the Green's function,
42, In particular, triangular subregions of S are interpolated quadratiocally
through,

g (1=u=v)(1-2u=2v) I+ u(2u-1)£2 + v(2v-1) X3

(42)
+ l.uvs“ + hv(1-u-v)£5 + l..u(1-u-v)£6

where the nodes r,, r, and ry map to the vertices (0, 0), (1, 0) and (0, 1)

respectively of a triangle in the (u, v) surface coordinate system, and the
1 3 1

nodes r,, £ and r, map to the midside positions 3> 7 (0, 3) and (%, 0)

respectively. To ensure an invertible mapping with the Jacobian being




non-vanishing within the triangle certain restrictions are necessary upon the
positions of the midside nodes __1;", ;5 and £6’39 A similar transformation will

\ map biguadratically nine reasonably positioned nodes to the vertices, midside
‘ positions and centre of a unit square in the local surface coordinate system,

13.

4 } 43. In the present implementation of the CHIEF method each subregion Si‘ is

thus defined by quadratically interpolating either six or nine nodes lying in
S to give triangular or quadrilateral subregions respectively as appropriate,
Piecewise constant approximations are taken for the surface pressure and normal
surface velocity, such that the basis funotions are defined as

1 r in Si‘
$;(x) = x,(r) = (43)
(0] otherwise

44. In the standard finite el ement terminology, these elements are of the
superparametric type with the geometry being specified to a greater accuracy
than the unknown functions,

45. The ocollocation points are naturally taken as the centroids of the surface
elements and the piecewise constant computed s olution is usually observed to
best approximate the true solution at these positions. Although such a function
approximation may beem rather crude, it has successfully formed the basis of

many practical acoustic radiation/scattering computer programa.“"-17

46, Numerical e xperience with a spherical surface indicates that quadratic
surface elements lead to an increase in accuracy over a piecewise planar surface
by a factor of at least 20, whilst a linear function approximation gives little
or no improvement over piecewise constant basis functions, The latter behaviour
is analogous, for integral equations, to the midpoint rule being more accurate
than the trapezium rule for numerical integration. The current interest in
integral equation methods will no doubt provide more insight into the gains to

be made with higher order approximations. In particular, Burtox:\}1 has suggested
the use of isoparametric bicubic spline elements as the basis of an improved
acoustic program,

47. The coefficients of the acoustic matrices mist be evaluated through
numerical quadrature., Singular integrands arise whenever the collocation point
I lies within the region of integration SJ" that is, for the diagonal matrix

elements Aii and Bii’ i=1,2, ..., m derived from the SHE,

48, The dominant part of the singularity in the diagonal elements of the
A matrix may be removed by rewriting the double layer potential term as

aG
[ MR @, - l {o) o (eax) - 2 72 e} o5, W)

-%pgﬂ
wheare
: G(rr') = e 5)

~ N~




4.

is the free-space Green's function for the Laplacian operator, and use has been
made of the identity,

aGo 1
-2 ' aa X '
7. (z.x') as = 2 r'ons, (46)

The weak singularity of g—?;— (r,£') at r=r' has been subtracted out by one of the
aG

o
same form of E (5,5').

49 Then, for the particular basis functions defined by (43),

m bGo (~ a8 G ( ) 7)

A = 1,0+ I - (r,r,) dS_ = = (r,r.) dS_.

ii 3=1 L } anr r l. n,, o~ Yl r
J

i
50, Numerically, the same integration rule should be employed for both inte-
grals over the subregion Si‘ to achieve subtaction of the singularity.

Unfortunately, it is not possible to treat the weak singularity of the single
layer potential term in a similar manner, and a simpler but less reliable scheme
is employed. The region Si‘ is further subdivided into subdbregions such that the

collocation point £y lies at a vertex of each subregion. In the surface oco-
ordinate system (u, v), the collocation point either 1ies at the position (15, 15)
in the unit square ar at (-15, 13) within the standard triangle. The unit square
is divided into four subsquares by the lines u = 15 and v = 13 and the standard
triangle is divided into three subtrianges with the point (%, 13) being a common

vertex. The integration rules adopted are Gaussian rules with degree of pre-
cision 3 for non-singular integrands and degree of precision 7 within each sub-

region for singular .’uﬂ:egramia.m’M Higher order rules were found to give no
significant increase in accuracy whilst with lower order rules the final solution
deteriorated in accuracy.

5« Advantage may be taken of any geometrical symmetry in the body when the
surface pressure and normal surface velocity have an identical symmetry. The
same unknown parameters may be associated with a number of surface elements Si‘

and consequently it is only necessary to collocate at the centroid of one of
those elements., In particular for complete axial symmetry, as in the examples
discussed below, this technique may be and is employed. In such cases however,
it would be considerably more efficient to take full advantage of the symmetry
and reformulate the problem in terms of a line rather than a surface integral

equati.on.1 6

52, As an illustration of the numerical method, consider a plane acoustic wave
incident upon a submerged homogeneous isotropic spherical shell with no material
damping enclosing a vacuum, Two particular ocases are presented; firstly, a
relatively thick shell which acts very much like a rigid scatterer, and secondly
a thin shell where the structure has a more pronounced effect on the acoustic

field.




53 Axisymmetric finite elements are used to model the shell for which the

mass and stiffness matrices have been defined many times.13 A six-noded 1so-—
parametric quadrilateral with quadratic variation in the circumferential
direction and linear variation in the radial direction was found to give accept-
able results with one element through the thickness of the shell. The acoustic
and structural elements are illustrated in Figure 1. Structural nodal lines on
the outer spherical surface coincide with acoustic element boundaries in order
to facilitate computation of the interaction matrix L.

544 Firstly, consider a spherical steel shell of outer radius 2.0 cm and

inner radius 1.5 cm submerged in water. The frequency of the incident plane
wave is chosen such that the acoustic wavenumber k (=w®/c) is unity. The
scattered surface pressure is initially computed assuming the outer surface of
the chell to be perfectly rigid, in which case equations (10) alone fully des—
cribe the acoustic field (with v = 0)s In Figure 2 the continuous lines are the

real and imaginary parts of the exact solution,42 while the computed solution is
shown using 18 elements in the direction of @ and 24 elements in each band around
the axis of symmetry.

55 When the response of the elastic structure is taken into account, modelled
with 18 structural elements, the results are as illustrated in Figures 3 and 4.
The exact solution, shown as the continuous lines, is obtained through a separa-

tion of variables analysis following Goodman and Stern.1 In Figure 3 the exact
solution for the rigid surface is also shown for comparison.

56 Now consider a thin spherical shell of outer radius 5.0 cm and inner radius
4,921875 cme. The scattered surface pressure when the outer surface is considered
to be rigid i1s given in Figure 5, using the same number of acoustic elements as
for the smaller spherees PFigures 6 and 7 show the effect of including the vibra-
tional response of the steel shell through 18 axisymmetric structural elements.
The exact rigid sphere solution is also superimposed upon Figure 6 to emphasis
the stronger fluid=solid interaction in this case. This is also evident from a
comparison of the magnitude of the surface displacements in the two cases,

5T« In neither of these problems is it necessary to consider interference from
interior eigenfunctions. For a spherical fluid=solid interface non-uniqueness
can only occur when the non-dimensional parameter ka (wavenumber x radius of
sphere) is a zero of the n-th order spherical Bessel function of the first kind,
J. g for some value of n.
n
THIS PAGE 1S BEST QUALITY PRACTICABLE
CONCLUSIONS  FROM COPY FURNISILD T0 DDC _uer—

58. By combining equations derived from a finite element analysis of a vibrating
elastic structure with those from an integral equation representation of an
infinite exterior acoustic field, an analysis of the coupled dynamic interaction
problem has been shown to be feasible.

59« The structural and acoustic models may be chosen completely independently
although the procedure does simplify if interpolation nodes are made to coincide,
the coupling being defined through three interaction matrices X, L and L's Thus
advantage may be taken of existing computer program packages designed to solve

the two uncoupled problems. In particular, it 1s hoped to combine the PAFEC43
structural analysis program with the acoustic radlatlon/scattering program des—

cribed in the previous section.3




-

16.

60. Some test examples for which analytic solutions are available have demon-
strated the practicability and accuracy of the approach, 1t is hoped in the near
future to be able to compare numerical and experimental results for some more
complex structures in water. If an unacceptably large numer of degrees of free-
dom for the structural model are required, it may then be necessary to consider
the alternative modal approach.
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